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The coherent-state qubit is a promising candidate for optical quantum information processing due to its nearly
deterministic nature of the Bell-state measurement (BSM). However, its nonorthogonality incurs difficulties
such as the failure of the BSM. One may use a large amplitude (α) for the coherent state to minimize the
failure probability, but the qubit then becomes more vulnerable to dephasing by photon loss. We propose a
hardware-efficient concatenated BSM (CBSM) scheme with modified parity encoding using coherent states with
reasonably small amplitudes (|α| � 2), which simultaneously suppresses both failures and dephasing in the BSM
procedure. We numerically show that the CBSM scheme achieves a success probability arbitrarily close to unity
for appropriate values of α and sufficiently low photon loss rates (e.g., � 5%). Furthermore, we verify that the
quantum repeater scheme exploiting the CBSM scheme for quantum error correction enables one to carry out
efficient long-range quantum communication over 1000 km. We show that the performance is comparable to
those of other up-to-date methods and even exceeds them in some cases. Finally, we present methods to prepare
logical qubits under modified parity encoding, and we implement elementary logical operations, which consist of
several physical-level ingredients such as generation of superpositions of coherent states (SCSs) and elementary
gates under the coherent-state basis. We then estimate the effects of imperfect physical-level elements on the
performance of the scheme. Our work demonstrates that the encoded coherent-state qubits in free-propagating
fields provide an alternative route to fault-tolerant information processing, especially to long-range quantum
communication.
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I. INTRODUCTION

Optical systems are a competitive candidate for quantum
information processing (QIP) due to their long coherence time
and advantages in long-distance transmission [1]. It is well
known that they are particularly promising for quantum com-
munication. Single-photon states are usually considered for
the carriers of optical qubits such as vacuum-single-photon-
qubits (single-rail encoding) [2] and polarization qubits
(dual-rail encoding) [3]. However, these encoding schemes
have a drawback in that the Bell-state measurement (BSM)
is nondeterministic with linear optics [4,5]. The BSM is
essential for QIP tasks such as quantum teleportation [6,7]
and entanglement swapping [8,9]. Quantum teleportation is
widely employed not only for quantum communication but
also for all-optical quantum computation with gate telepor-
tation [3]. It is thus important to overcome the problem of
nondeterministic BSM. A number of methods have been sug-
gested using multiple photons for encoding [10,11], ancillary
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states [12–14], coherent states [15–24], and hybrid states
[25–27] to improve the success probability of BSM. Among
them, we focus here on the scheme using coherent-state qubits
that enables one to perform a nearly deterministic BSM with
linear optics [15,16,28].

Early studies on coherent states as carriers of quantum
information focus on how to construct logical qubits and
elementary logical gates [15,17,18,29–32]. In these works, the
basis set is chosen either as {| ± α〉} or as {N±(|α〉 ± | − α〉)},
where | ± α〉 are coherent states of amplitudes ±α, and
N± are normalization factors. Various attempts to obtain
fault-tolerance on QIP with coherent states have been made,
starting from simple embedding on well-known discrete-
variable (DV) encoding schemes [19,22], to exploiting the
property of continuous-variable (CV) systems [24,33–38],
with some experimental demonstration [39–42]. Recently, it
was claimed that a simple one-dimensional (1D) repetition cat
code enables hardware-efficient topologically protected quan-
tum computation by exploiting the 2D phase space for logical
operations [43]. However, these studies mainly deal with
coherent-state qubits inside a cavity system, and they cannot
be directly applied to fault-tolerant QIP in free-propagating
optical fields. Our main goal is to investigate the possibility
of using simple concatenated repetition codes, which can be
generated and manipulated with combinations of well-known
elementary gates, for fault-tolerant QIP with free-propagating
coherent-state qubits.
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As mentioned before, the BSM of coherent-state qubits,
where the basis is {| ± α〉}, is nearly deterministic. How-
ever, due to the nonorthogonality of the basis set, a small
but non-negligible probability of failure exists [15,16]. One
may use coherent states with large values of |α| to solve
this problem, but the qubit then becomes more vulnerable to
dephasing by photon loss [19]. It is impossible to ideally sup-
press both failures and dephasing simultaneously with such an
elementary coherent-state encoding. In this paper, motivated
by recent works on the concatenated Bell-state measurement
(CBSM) with multiphoton polarization qubits [11,44] and
the repetition cat code [43], we overcome these obstacles by
introducing the CBSM with the modified parity encoding em-
ploying coherent states. We propose an elaborately designed
CBSM scheme with consideration of hardware efficiency, and
we show numerically that the scheme successfully suppresses
both failures and dephasing simultaneously with reasonably
small amplitudes (e.g., |α| < 2) of coherent states.

One of the key applications with BSMs is long-distance
quantum communication through quantum repeaters [45]. In
the initially proposed quantum repeater schemes to generate
Bell pairs between distant parties [46–50], heralded entan-
glement generation is required for suppressing transmission
errors, which makes long-lived quantum memory essential
[51]. Recently, quantum repeater schemes exploiting quantum
error correction (QEC) have been suggested for suppressing
errors, which do not require long-lived quantum memory
[11,44,51–58]. In these schemes, a quantum repeater is built
up by encoding information with QEC codes, sending it by
a lossy channel, and relaying the encoded information from
each station to the next station with error correction. In each
repeater station, a fault-tolerant BSM may be used for QEC;
each incoming lossy logical qubit is teleported out of the
station while recovering its original information [11]. Later
in this paper, we evaluate the performance of the quantum
repeater scheme using our CBSM scheme, and we show that it
indeed enables quantum repeaters with high performance over
distances longer than 1000 km.

The outline of the paper is as follows. In Sec. II, we review
the BSM scheme of lossless coherent-state qubits, generalize
it to lossy cases, and evaluate its success, failure, and error
rates against the coherent-state amplitude α and the photon
survival rate. In Sec. III, we present the modified parity-
encoding scheme employing coherent-state qubits, and we
show the hierarchy relation between the logical, block, and
physical levels. In Sec. IV, we first suggest an unoptimized
CBSM scheme, which uses simple majority votes and count-
ing of measurement results only, and we analyze the root of
its fault tolerance. After that, we propose an improved CBSM
scheme that is elaborately designed considering hardware ef-
ficiency. In Sec. V, we present the analytic expressions of the
probability distributions of CBSM results, which are simple
matrix forms enabling fast sampling of the results and can be
generalized to any CBSM scheme. In Sec. VI, we show the
results of numerical calculations. We first analyze the success,
failure, and error probabilities of a CBSM. We then investigate
the performance of the quantum repeater scheme, which uses
our CBSM scheme for error correction, as one of the key
applications of the BSM. In Sec. VII, we describe the methods
to implement our encoding and CBSM schemes in terms of

FIG. 1. Bell-state measurement (BSM) scheme of coherent-state
qubits [15] with one 50:50 beam splitter (BS) and two photon-
number parity detectors (PNPDs). The result is determined by the
measurement results of the PNPDs as shown in Eq. (2).

physical-level elements such as superpositions of coherent
states (SCSs) and logical gates on coherent-state qubits. We
then briefly review recent progress on implementing these
elements and roughly estimate the effects of experimental
imperfections. We conclude with final remarks in Sec. VIII.

II. BELL-STATE MEASUREMENT OF LOSSY
COHERENT-STATE QUBITS

We first review the BSM scheme of lossless coherent-state
qubits encoded with the basis

|0L〉 := |α〉, |1L〉 := |−α〉. (1)

The four Bell states of coherent-state qubits are

|φ±〉 := N±(|α〉|α〉 ± |−α〉|−α〉),

|ψ±〉 := N±(|α〉|−α〉 ± |−α〉|α〉),

where N± := [2(1 ± e−4|α|2 )]−1/2 are normalization factors. A
BSM of lossless coherent-state qubits is performed with a
50:50 beam splitter and two photon number parity detectors
(PNPDs) [15,16], as shown in Fig. 1. The four Bell states can
be deterministically identified from the results of the PNPDs
unless both of the PNPDs do not detect any photons:

(even, 0) → |φ+〉, (odd, 0) → |φ−〉,
(0, even) → |ψ+〉, (0, odd) → |ψ−〉. (2)

In the case in which both of the PNPDs do not detect photons
(regarded as the failure of the BSM), only the sign of the Bell
state (namely, “±” of |φ±〉 or |ψ±〉) can be determined since
there exists ambiguity between |φ+〉 and |ψ+〉.

For realistic scenarios, we need to introduce photon loss.
We use the photon loss model by the Master equation under
the Born-Markov approximation with zero temperature [59]:

∂ρ

∂τ
= γ
∑

i

(
âiρâ†

i − 1

2
â†

i âiρ − 1

2
ρâ†

i âi

)
, (3)

where ρ(τ ) is the density operator of the system suffering
photon loss as a function of time τ , γ is the decay constant,
and âi is the annihilation operator of the ith mode. It is known
that this photon loss model is equivalent to the beam splitter
model where each mode is independently mixed with the vac-
uum state by a beam splitter with the transmittance t = e−γ τ/2
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and the reflectance r = √
1 − t2 [60]:(

â
b̂

)
→
(

â′

b̂′

)
=
(

t −r
r t

)(
â
b̂

)
. (4)

Here, â (â′) is the annihilation operator of the input (output)
mode of each concerned system, and b̂ (b̂′) is that of the input
(output) mode of an ancillary system which is initially in the
vacuum state. The final state after suffering photon loss is
obtained by tracing out the ancillary system from the output
state of the beam splitter. Since the photon survival rate η is
equal to t2, the final state can be expressed in terms of η.

Now, we consider the BSM on lossy coherent-state qubits.
More precisely, we deal with a situation in which the two
coherent-state qubits suffer photon loss before the BSM in
Fig. 1 is performed. We first rewrite each element of the BSM
scheme mathematically: UBS is a unitary channel correspond-
ing to a 50:50 beam splitter, Λη is a photon loss channel with
a survival rate η, and �x for x ∈ {0, 1, 2} is a projector defined
by

�0 := |0F〉〈0F|, �1 :=
∑

n�1:odd

|nF〉〈nF|,

�2 :=
∑

n�2:even

|nF〉〈nF|,

where |nF〉 is the Fock state with a photon number of n. Then
a set of operators

Mx,y := [UBS ◦ (Λη1 ⊗ Λη2

)]†
(�x ⊗ �y)

with x, y ∈ {0, 1, 2} forms a positive-operator valued measure
(POVM) corresponding to the BSM of the lossy coherent-state
qubits. Their explicit forms are presented in Appendix A.

Assuming the equal prior probability distribution of the
four Bell states B0 = {|φ±〉, |ψ±〉}, we choose the Bell state
|B〉 ∈ B0 maximizing the posterior probability from the PNPD
results given by (x, y):

Pr(B|x, y) = Pr(x, y|B)Pr(B)∑
|B′〉∈B0

Pr(x, y|B′)Pr(B′)

∝ Pr(x, y|B) = 〈B|Mx,y|B〉. (5)

In other words, we choose |B〉 ∈ B0 satisfying

|B〉 = argmax
|B′〉∈B0

〈B′|Mx,y|B′〉, (6)

for the result of the BSM. Table I shows the correspondences
between the pairs of the PNPD results and the resulting Bell
states, which are obtained from Eq. (6) and the POVM ele-
ments of the BSM in Appendix A. Note that some cases that
never happen in lossless cases occur in lossy cases: Both x and
y can be nonzero at the same time, while the probabilities of
these cases vanish for η1 = η2.

If the state before suffering the photon loss is one of the
four Bell states, there are five possible cases regarding the
result of the measurement: success, X-error, Z-error, Y -error,
and failure. If the Bell state obtained from Eq. (6) is the same
as the initial one, we call it a success. An X -error corresponds
to a “letter flip,” i.e., the change of the letter (“φ” or “ψ”) of
a Bell state such as from |φ+〉 to |ψ+〉. A Z-error corresponds
to a “sign flip,” i.e., the change of the sign (“±”) of a Bell

TABLE I. Correspondences between the pairs of the PNPD re-
sults and the resulting Bell states. The Bell state |B〉 ∈ {|φ±〉, |ψ±〉}
is chosen to maximize the posterior probability Pr(B|x, y) in Eq. (5).
Here, x and y indicate the results of the two PNPDs, where 0, 1, and
2 denote zero, odd, and even detection, respectively. The cases when
both x and y are nonzero can occur only when the loss rates of the two
modes are different. We also note that only the sign of the Bell state
can be determined in the cases of x = y, which we call a “failure,”
since both |φ+〉 and |ψ+〉 maximize the posterior probability at the
same time.

�������x
y

0 1 2

0 φ+ or ψ+ ψ− ψ+
1 φ− φ+ or ψ+ ψ−
2 φ+ φ− φ+ or ψ+

state such as from |φ+〉 to |φ−〉. A Y -error corresponds to
simultaneous symbol and sign flips. The last case, a failure,
corresponds to the cases of x = y in Table I where the letter
of the Bell state cannot be determined, since both |φ+〉 and
|ψ+〉 maximize the posterior probability at the same time. We
would like to emphasize that the sign can still be determined
even if a BSM fails.

Now, we numerically analyze the success, failure, and error
probabilities of a BSM on coherent-state qubits. We assume
that both systems suffer internal losses with the survival
rate of η0, and the photons of the second system travel the
distance of L0 = 1 km before the measurement. The photon
survival rates of the two systems are then η1 := η0 and η2 :=
η0e−L0/Latt , respectively, where Latt = 22 km is the attenuation
length.

Figure 2 shows the success, failure, and error probabili-
ties of the BSM in this situation against the amplitude α of
the coherent state and the internal photon survival rate η0.
It shows the well-known fact that the success probability is
higher than that of a BSM on multiphoton polarization qubits
with the same photon number. Also, the failure and Z-error
probabilities have a tradeoff relation with changing α: When
α increases, failures get less probable while Z-errors get more
probable. It is because coherent states with large amplitudes
have smaller overlaps with the vacuum state and are more
vulnerable to dephasing by photon loss. Furthermore, it is
worth noting that the errors are strongly biased, i.e., the X -
and Y -error probabilities are much smaller than the failure
and Z-error probabilities regardless of the values of α and η0:
pX , pY � 10−4. They even vanish if η1 = η2 since both x and
y in Table I can be nonzero simultaneously only when the two
photon survival rates are different, which is particularly im-
portant for constructing a hardware-efficient CBSM scheme
in Sec. IV C.

III. MODIFIED PARITY ENCODING SCHEME
WITH COHERENT-STATE QUBITS

Now, we present the encoding scheme used in our CBSM
scheme. We modify the parity state encoding or generalized
Shor’s encoding [11,61] for the coherent-state qubit. The
modified parity encoding is defined as follows:
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FIG. 2. Success, failure, and Z-error probabilities (pi, pfail, and
pZ , respectively) of a BSM on coherent-state qubits against (a) α

(fixing η0 = 0.99) or (b) η0 (fixing α = 1), where α is the amplitude
of the used coherent states and η1 := η0 is the photon survival rate
of the first system. The photon survival rate of the second system
is set to be η2 := η0e−L/Latt , where L := 1 km and Latt := 22 km. It
corresponds to the situation when both systems suffer internal losses
with the photon survival rates of η0, and the photons of the second
system travel the distance of L := 1 km before the measurement. We
also present the success probability ppol

I of a BSM on multiphoton
polarization qubits for different photon numbers [10], which is plot-
ted for comparison, where α is now the amplitude of the coherent
state which has the same photon number with each qubit. The X -
and Y -error probabilities (pX and pY , respectively) are not plotted,
since they are much smaller than other probabilities regardless of α

and η0: pX , pY � 10−4.

Definition 1. The logical basis {|0L〉, |1L〉} of the (n, m, α)
modified parity encoding where n and m are odd integers and
α is a complex number is defined as

|0L〉 := [N (m){|+̃〉⊗m + |−̃〉⊗m}]⊗n,

|1L〉 := [N (m){|+̃〉⊗m − |−̃〉⊗m}]⊗n,

where |±̃〉 := |α〉 ± | − α〉 are unnormalized SCSs (the tilde
above the ket is used to denote that it is unnormalized) and
N (m) := [2m{(1 + e−2|α|2 )m + (1 − e−2|α|2 )m}]−1/2.

The SCS |+̃〉 (|−̃〉) is called an even (odd) SCS because
it contains an even (odd) number of photons. Note that the
encoding coincides the original coherent-state encoding in
Eq. (1) if n = m = 1.

The overlap between |0L〉 and |1L〉 is given as

〈0L|1L〉 =
((

1 + e−2|α|2)m − (1 − e−2|α|2)m(
1 + e−2|α|2)m + (1 − e−2|α|2)m

)n

≈ (me−2|α|2 )n, (7)

where the approximation holds when me−2|α|2 � 1. If α > 1,
n does not need to be very large to make the basis nearly
orthogonal. For example, fixing m to be 5, 〈0L|1L〉 � 0.001
for α = 1.2 and n � 7, and 〈0L|1L〉 � 10−5 for α = 1.6 and
n � 3.

The modified parity encoding has a hierarchy structure
of Hilbert spaces: the logical, block, and physical levels.

The logical-level space is the total Hilbert space spanned
by {|0L〉, |1L〉}. It can be divided into n block-level spaces
(referred to as blocks), each of which is spanned by {|±(m)〉},
where |±(m)〉 := N (m){|+̃〉⊗m ± |−̃〉⊗m}. A block is again di-
vided into m physical-level spaces (referred to as PLSs), each
of which is spanned by {| ± α〉}.

We also define the four Bell states for each level as follows,
omitting normalization constants:

(a) Logical level:

|�±〉 := |0L〉|0L〉 ± |1L〉|1L〉,
|±〉 := |0L〉|1L〉 ± |1L〉|0L〉.

(b) Block level:∣∣φ(m)
±
〉

:= ∣∣+(m)
〉∣∣+(m)

〉± ∣∣−(m)
〉∣∣−(m)

〉
,∣∣ψ (m)

±
〉

:= ∣∣+(m)
〉∣∣−(m)

〉± ∣∣−(m)
〉∣∣+(m)

〉
.

(c) Physical level:

|φ±〉 := |α〉|α〉 ± |−α〉|−α〉,
|ψ±〉 := |α〉|−α〉 ± |−α〉|α〉.

Each logical-level Bell state can be decomposed into block-
level Bell states:

|�+(−)〉 = Ñ±,n,m

∑
k=even(odd)�n

P[|φ̃(m)
− 〉⊗k|φ̃(m)

+ 〉⊗n−k], (8a)

|+(−)〉 = Ñ±,n,m

∑
k=even(odd)�n

P[|ψ̃ (m)
− 〉⊗k|ψ̃ (m)

+ 〉⊗n−k], (8b)

where

Ñ±,n,m := 1√
2n−1

[1 ± u(α, m)2n]−
1
2 , (9)

|φ̃(m)
± 〉 := [1 ± u(α, m)2]

1
2 |φ(m)

± 〉, (10)

|ψ̃ (m)
± 〉 := [1 ± u(α, m)2]

1
2 |ψ (m)

± 〉,

u(α, m) :=
(
1 + e−2|α|2)m − (1 − e−2|α|2)m(
1 + e−2|α|2)m + (1 − e−2|α|2)m , (11)

and P[·] is the summation of all the possible permutations of
the tensor product inside the square brackets.

Similarly, each block-level Bell state can be decomposed
into physical-level Bell states:

|φ(m)
± 〉 = Ñ±,1,m√

2

∑
l=even�m

P[|ψ±〉⊗l |φ±〉⊗m−l ], (12a)

|ψ (m)
± 〉 = Ñ±,1,m√

2

∑
l=odd�m

P[|ψ±〉⊗l |φ±〉⊗m−l ]. (12b)

The core of the CBSM is contained in Eqs. (8) and
(12); they make it possible to perform a logical BSM by the
combination of n block-level BSMs, each of which is again
performed by the combination of m physical-level BSMs.

The equations also show that, in a lossless system, a
CBSM does not incur any logical error (i.e., the only possible
cases are success and failure). This property is important since
failures are detectable whereas logical errors are not. Hence,
the modified parity encoding in Definition 1 is the natural
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FIG. 3. Schematic figure of the CBSM schemes with coherent-
state qubits. The schemes are done in a concatenated manner: Each
logical-level BSM (BSM2) is done by the combination of n block-
level BSMs (BSM1’s). Each BSM1 is again done by the combination
of m physical-level BSMs (BSM0’s).

extension of the original coherent-state encoding in Eq. (1),
in the sense that this desired property still remains. If we
use other states such as normalized SCSs or coherent states
in place of unnormalized SCSs |±̃〉 for the encoding, this
property no longer exists.

IV. CONCATENATED BELL-STATE MEASUREMENT
WITH ENCODED COHERENT-STATE QUBITS

Now, we suggest the concatenated Bell-state measurement
(CBSM) schemes with the modified parity encoding presented
in the previous section. The schematic figure of the CBSM
schemes is shown in Fig. 3. As mentioned in the previous
section, each logical-level BSM is done by the composition
of n block-level BSMs, and each block-level BSM is done by
the composition of m physical-level BSMs. We first consider
an unoptimized scheme consisting of the simple counting of
measurement results. We then present a hardware-efficient
scheme that can significantly reduce the expected cost of the
CBSM defined in terms of the expected number of physical-
level BSMs used for a single CBSM.

A. Unoptimized CBSM scheme

Here, we suggest a CBSM scheme that is unoptimized but
much simpler than the hardware-efficient scheme presented in
the next subsection. It is straightforward to justify the scheme

with Eqs. (8) and (12). The interpretation of the measurement
results in the scheme is summarized in Table II.

1. Physical level: BSM0

For a physical-level BSM (referred to as a BSM0), we
use the BSM scheme for a single lossy coherent-state qubit
presented in Fig. 1 and Table I. Remark that the sign of
the Bell state is always determinable, while its letter is not
determinable if the results of the two PNPDs are the same
(namely, x = y in Table I).

2. Block level: BSM1

A block-level BSM (referred to a BSM1) is done by per-
forming a BSM0 on each PLS in the block. The sign of the
block-level Bell state is determined by the majority vote of
the signs of the BSM0 results. Its letter is determined by the
parity of the number of the BSM0 results with the ψ symbol:
φ (ψ) if the number is even (odd).

Since m is odd, the sign of the block-level Bell state is
always determinable. Its letter is not determined if at least one
BSM0 fails, which we regard as the BSM1 failing.

3. Logical level: BSM2

A logical-level BSM (referred to as a BSM2) is done by
performing a BSM1 on each block. The sign of the logical-
level Bell state is determined by the parity of the number of the
BSM1 results with the minus sign: plus (minus) if the number
is even (odd). Its letter is determined by the majority vote of
the letters of the BSM1 results excluding the failed ones.

Again, the sign of the logical-level Bell state is always
determinable. Its letter is not determined if all the BSM1’s fail
or the resulting block-level Bell states have the same number
of both letters. We regard such a case as the failure of the
BSM2.

B. Fault tolerance of concatenated Bell-state measurement

We next investigate the fault tolerance of the unoptimized
CBSM scheme suggested above. We argue that the physical-
and block-level repetitions contribute to suppressing logical
errors and failures, respectively.

First, a Z (X ) -error in the logical level is suppressed
by the majority vote in the block (logical) level. Note that
the sign (letter) of a logical-level Bell state is determined
only by the signs (letters) of the Bell states of the lower
levels, as described in Table II. Z-errors (sign flips) in the

TABLE II. Interpretation of the measurement results in the unoptimized CBSM scheme. It is also valid in the hardware-efficient CBSM
scheme, if we consider the results of BSM0’s (BSM1’s) and BSMsign

0 ’s (BSMsign
1 ’s) together when determining the sign of each block (logical)

level Bell state.

Level Sign (±) Letter (φ or ψ)

Physical (BSM0) BSM scheme of the original coherent-state qubits
Block (BSM1) Majority vote of the signs of the BSM0 results Number of BSM0 results with the (−) sign:

φ if even, ψ if odd
Logical (BSM2) Number of BSM1 results with the ψ letter: Majority vote of the letters of the BSM1 results

(+) if even, (−) if odd
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FIG. 4. Overview of the hardware-efficient CBSM scheme. (a) For a BSM0 (full physical-level BSM), a 50:50 beam splitter (BS) and two
PNPDs are used. (b) For a BSMsign

0 (partial physical-level BSM detecting only the sign), a single PNPD is necessary, instead of two of them.
(c) For a BSM1 (full block-level BSM), one of BSM0 and BSMsign

0 is done on each PLS one by one. We define positive integers d and f . d is
the index of the first PLS such that m/2� of the physical-level BSM results until the PLSs have the same sign. f is the index of the first PLS
such that the corresponding physical-level BSM fails, which is defined only if such a PLS exists. (CASE 1) If there are no failed BSM0’s (i.e.,
f is not defined), BSM0’s are done on the entire PLSs. (CASE 2) If d � f , BSM0’s are done on the first f PLSs and the remaining PLSs are
left untouched. (CASE 3) If d > f , one performs BSM0’s for the first f PLSs and BSMsign

0 ’s for the next d- f PLSs. The remained PLSs are
left untouched. (d) For a BSMsign

1 (partial block-level BSM detecting only the sign), BSMsign
0 ’s are done for the first d PLSs, and the remaining

PLSs are left untouched. (e) For a BSM2 (full logical-level BSM), BSM1’s are done one by one until j not-failed BSM1 results are obtained,
where j is a controllable positive integer referred to as the letter solidity parameter. BSMsign

1 ’s are then done for the left blocks.

physical level can be corrected by the majority vote in the
block level, thus they do not cause a logical-level Z-error
with a high probability. Similarly, X -errors (letter flips) in
the physical level can be corrected by the majority vote in
the logical level, thus they also do not cause a logical-level
X -error with a high probability. Since Z-errors are much more
common than X -errors in the physical level (pX /pZ � 10−3),
we can infer that the physical-level repetition is crucial for
fault-tolerance.

However, we cannot assure that the repetitions always
suppress logical errors. Although Z-errors can be corrected
by the physical-level repetition, the block-level repetition has
a rather negative effect on it: Any single remaining Z-error
among the block-level BSM results can cause a Z-error in the
logical level. Therefore, a large value of the size of the block-
level repetition (n) makes the CBSM vulnerable to Z-errors. A
similar logic applies to X -errors: The physical-level repetition
has a negative effect on it.

Next, as explained in the previous subsection, a BSM2 fails
if all the BSM1’s fail or the BSM1 results have the same
number of both letters, and a BSM1 fails if any single BSM0

fails. The block-level repetition thus suppresses the failure
of the CBSM, whereas the physical-level repetition makes it
vulnerable to the failure.

In summary, ignoring X -errors, which are much more un-
common than Z-errors and failures, the physical (block) -level
repetition contributes to making the CBSM tolerant to Z-
errors (failures) but vulnerable to failures (Z-errors). Despite
these negative effects, we numerically show in Sec. VI that
high success probabilities are still achievable if the survival

rate of photons is high enough and the amplitude of the coher-
ent state is large enough.

C. Improved hardware-efficient CBSM scheme

In this subsection, we suggest an improved CBSM scheme
that is elaborately designed considering hardware efficiency.
We explicitly define the cost of a single trial of the CBSM in
the last part of this section, but we first regard it as the number
of physical-level BSMs required for it.

The unoptimized scheme in Sec. IV A always requires nm
physical-level BSMs, and here we suggest a way to decrease
this number. The core idea is that it is redundant to perform
full BSMs for all the PLSs or blocks, where the term “full” is
used to emphasize that the BSM captures both sign and letter
information of the Bell state. For some PLSs or blocks, it is
enough to get only the sign information of the Bell state or
even do not measure it at all. Especially for the logical level,
it is enough to perform full BSMs only for the first few blocks
due to the biased noise. The hardware-efficient CBSM scheme
presented from now on is summarized in Fig. 4.

1. Physical level: BSM0 and BSMsign
0

The BSM0 scheme is completely the same as the scheme
given in Sec. II: Using a 50:50 beam splitter and two PNPDs
[see Fig. 4(a)], one of the four Bell states can be identified
according to the results of the PNPDs, unless the two results
are the same (failure). If a BSM0 fails, only the sign of the
Bell state can be captured.
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However, we need another ingredient in the physical level
for the hardware-efficient CBSM scheme: the partial physical-
level BSM (BSMsign

0 ) identifying only the sign of the physical-
level Bell state [see Fig. 4(b)]. For a BSMsign

0 , one needs to
measure the parity of x + y in Table I. Therefore, only one
PNPD is needed for a BSMsign

0 instead of two of them.

2. Block level: BSM1 and BSMsign
1

For a block-level BSM, we perform either BSM0 or
BSMsign

0 on each PLS, one by one in order. The process
is not parallel, since the determination between BSM0 and
BSMsign

0 is affected by the previous measurement results. We
first define a positive integer d � m by the index of the first
PLS such that m/2� of the physical-level BSM results until
that PLS has the same sign. In other words, the result of the
majority vote of the signs is definitely determined only by the
first d physical-level BSMs, thus the sign information is no
longer necessary. Also, we define a positive integer f � m by
the index of the first PLS such that the corresponding BSM
fails, which is defined only if such a PLS exists.

Three cases are possible on BSM0: no failed physical-
level BSMs (i.e., f is not defined), d � f , and d > f [see
Fig. 4(c)]. If there are no failed physical-level BSMs (CASE

1), it is the same as the unoptimized scheme; BSM0’s are done
for all the PLSs. If d � f (CASE 2), BSM0’s are done for the
first f PLSs. The remained m − f PLSs are left untouched. If
d > f (CASE 3), BSM0’s are done for the first f PLSs, then
BSMsign

0 ’s are done for the next d − f PLSs. The remained
m − d PLSs are left untouched.

For all three cases, the sign of the block-level Bell state
is determined by the signs of the first d BSM0 (or BSMsign

0 )
results. However, its letter is determined only for the first case
by the parity of the number of BSM0 results with the letter ψ .
For the second and third cases, there exists a failed BSM0, thus
the number of results with the letter ψ is ambiguous. Hence,
the BSM1 fails in these two cases. This is why we can do
nothing on the last several PLSs after the sign of the block-
level BSM is determined.

Like the physical level, we also consider the partial block-
level BSM (BSMsign

1 ), which determines only the sign of the
block-level Bell state [see Fig. 4(d)]. For a BSMsign

1 , BSMsign
0 ’s

are done for the first d PLSs, and the remaining PLSs are left
untouched. Defining a positive integer d � m similarly, the
sign of the block-level Bell state is determined by the majority
vote of the first d BSMsign

0 results.

3. Logical level: BSM2

For a logical-level BSM (BSM2) [see Fig. 4(e)], BSM1’s
are done one by one until we get j not-failed results. j is
a controllable positive odd integer referred to as the letter
solidity parameter in the sense that high values of j lead to
high probabilities to get correct letter information. After that,
BSMsign

1 ’s are done for the remaining blocks.
The sign of the resulting logical-level Bell state is deter-

mined by the parity of the number of BSM1 or BSMsign
1 results

with the minus sign. Its letter is determined by the majority

vote of the letters of the BSM1 results. The BSM2 fails if all
the BSM1’s fail or the result of the majority vote is a tie.

Note the difference between BSM2 and BSM1: The major-
ity vote in a BSM2 is taken for a few blocks, while the majority
vote in a BSM1 is taken for all the PLSs. This asymmetry
comes from the fact that the noise is strongly biased; in BSM0,
X -errors are much less likely to occur compared to Z-errors,
as shown in Fig. 2.

4. Calculation of the cost

At the beginning of this subsection, we determine the cost
of a CBSM by the number of physical-level BSMs used for the
measurement. However, considering that PNPDs are the most
difficult elements when implementing the BSM0 scheme and
a BSMsign

0 uses one PNPD while a BSM0 uses two of them,
it is reasonable to assign each BSMsign

0 half the cost of one
BSM0.

Definition 2. The cost function C of a CBSM is defined by

C := NBSM0 + 1
2 NBSMsign

0
, (13)

where NBSM0 and NBSMsign
0

are the numbers of BSM0’s and

BSMsign
0 ’s used for the CBSM, respectively. We also define the

expected cost Cexp(n, m, α, j; η) by the expectation value of
the cost C for the CBSM scheme specified by the parameters
(n, m, α, j) and the photon survival rate η, under the assump-
tion that the initial state before suffering photon loss is one of
the four logical Bell states with equal probabilities.

We use the expected cost Cexp as a measure of the
hardware-efficiency of a CBSM scheme. It is straightforward
to see that the CBSM scheme in the previous subsection has
a lower expected cost than the unoptimized one in Sec. IV A.
Not only that, it is designed to minimize the expected cost.
For a BSM1, the numbers of BSM0’s and BSMsign

0 ’s are
minimized while keeping the result the same as that of the cor-
responding BSM1 in the unoptimized scheme. For BSM2, the
expected cost is determined by the controllable letter solidity
parameter j.

D. Parallelization of the concatenated Bell-state measurement

The two CBSM schemes in Secs. IV A and IV C are
processed in a completely or partially distributed manner,
which makes efficient information processing possible by par-
allelization. The unoptimized scheme is done in a completely
distributed manner, i.e., a BSM2 is split by 2 nm BSM0’s, each
of which is performed independently. The BSM0 results are
collected classically to deduct the logical-level BSM result.

On the other hand, the hardware-efficient scheme can be
done in a partially distributed manner allowing partial par-
allelization, with requirements of classical communication
channels between different PLSs and blocks. In a BSM2,
BSM1’s can be done parallelly for the first j blocks, then
one by one until obtaining j not-failed BSM1 results, where
j is the letter solidity parameter. BSMsign

1 ’s for the remaining
blocks can also be done parallelly. In a BSM1, BSM0’s should
be done one by one until a BSM0 fails, so BSM0’s in all
three cases cannot be done parallelly. CASE 3 can be partially
parallelized only if f < m/2: BSMsign

0 ’s can be done parallelly
for ( f + 1)th to m/2�th PLS since d is always larger than
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m/2. In BSMsign
1 , BSMsign

0 can be done parallelly for the first
m/2� PLSs, then one by one for the remaining PLSs.

Therefore, the hardware efficiency is the result of the
sacrifice of parallelization. We can still widen the range of
parallelization by adjusting the scheme appropriately at the
expense of reducing hardware efficiency. For example, in
a BSM2, BSM1’s can be done for the first j blocks, not
for the first not-failed j blocks. Moreover, in a BSM1 and
BSMsign

1 , instead of determining the type of the BSM (BSM0

or BSMsign
0 ) separately for each PLS, we can divide the PLSs

into several groups and perform BSMs of the same type par-
allelly on PLSs in each group. However, we use the original
hardware-efficient CBSM scheme for the numerical simula-
tion in Sec. VI to figure out the best possible performance.

V. PROBABILITY DISTRIBUTIONS OF CONCATENATED
BELL-STATE MEASUREMENT RESULTS

In this section, we present the analytic expressions of the
probability distributions of CBSM results conditioning to the
initial Bell state before suffering photon loss. We only con-
sider the unoptimized CBSM scheme since the measurement
results of the hardware-efficient CBSM scheme are the direct
consequences of those of the unoptimized scheme. Here, we
show only the final results. A brief outline for inducing the
results is presented in Appendix C.

The results of this section have two important mean-
ings: First, the probability distributions are written in simple
matrix-form expressions, which makes it possible to sample
arbitrary CBSM results at a high rate since a matrix calcu-
lation can be done much faster on a computer compared to
calculating the same thing by simple loops. Second, the results
can be easily generalized to any CBSM schemes with other
encoding methods such as multiphoton polarization encoding
[11].

A. Probability distributions of block-level results

We first find the probability distributions of block-level
BSM results, conditioning to the initial block-level Bell state.
A single BSM1 result can be expressed by two vectors, x, y ∈
{0, 1, 2, 3}m, where their ith elements are the two PNPD
results of the ith BSM0. What we want is the conditional prob-
ability Pr(x, y | B1) for each |B1〉 ∈ B1 := {|φ(m)

± 〉, |ψ (m)
± 〉}.

First, we define a 4×4 matrix M̃±
x,y for each pair of x, y ∈

{0, 1, 2, 3} as

M̃±
x,y :=

⎛⎜⎜⎜⎝
M±

11 M±
12 M±

12 M±
22

M±
12 M±

11 M±
22 M±

12

M±
12 M±

22 M±
11 M±

12

M±
22 M±

12 M±
12 M±

11

⎞⎟⎟⎟⎠,

where

M±
11 := 〈φ±|Mx,y|φ±〉,

M±
12 := 〈φ±|Mx,y|ψ±〉,

M±
22 := 〈ψ±|Mx,y|ψ±〉

are the matrix elements of the POVM elements of the BSM0

and they can be calculated from Eqs. (A2) in Appendix A. De-

noting the kth elements of x and y by xk and yk , respectively,
we get

Pr(x, y | φ(m)
± ) = 1

2 Ñ±(1, m)2v±
m1(x, y), (14a)

Pr(x, y | ψ (m)
± ) = 1

2 Ñ±(1, m)2v±
m4(x, y), (14b)

where Ñ±(1, m) is defined in Eq. (9) and v±
mμ(x, y) is

the μth element of a four-dimensional vector v±
m (x, y) =

M̃±
xm,ym

· · · M̃±
x1,y1

(1, 0, 0, 0)T .
A brief outline for inducing these results is presented in

Appendix B 1.

B. Probability distributions of logical-level results

Now, we consider the probability distributions of logical-
level results conditioning to the initial logical-level Bell state,
which is the goal of this section. A single CBSM result can
be expressed by two matrices X, Y ∈ {0, 1, 2, 3}n×m, where
their (i, k) elements are the two PNPD results of the kth PLS
of the ith block. What we want is the conditional probability
Pr(X, Y | B2) for each |B2〉 ∈ B2 := {|�±〉, |±〉}.

We first define 2×2 matrices L̃φ
x,y and L̃ψ

x,y for each pair of
x, y ∈ {0, 1, 2, 3}m in a similar way to the block-level case:

L̃φ(ψ )
x,y :=

(
Lφ(ψ )

+ Lφ(ψ )
−

Lφ(ψ )
− Lφ(ψ )

+

)
,

where

Lφ(ψ )
± := [1 ± u(α, m)2]〈φ(m)

± (ψ (m)
± )|

m⊗
k=1

Mxk ,yk |φ(m)
± (ψ (m)

± )〉,

(15)

u(α, m) is defined in Eq. (11), and xk, yk are the kth elements
of x and y, respectively. Note that the right-hand side of
Eq. (15) can be calculated from Eqs. (14). Denoting the ith
row vectors of X and Y by xi and yi, respectively, we get

Pr(X, Y|�+(+)) = Ñ+(n, m)2w
φ(ψ )
n1 (X, Y),

Pr(X, Y|�−(−)) = Ñ−(n, m)2w
φ(ψ )
n2 (X, Y),

where Ñ±(n, m) is defined in Eq. (9) and wφ(ψ )
nμ (X, Y) is the

μth element of the two-dimensional vector wφ(ψ )
n (X, Y) :=

L̃φ(ψ )
xn,yn · · · L̃φ(ψ )

x1,y1 (1, 0)T . A brief outline for inducing these re-
sults is presented in Appendix B 2.

In conclusion, one can calculate the probability distribu-
tions of CBSM results by systematic matrix operations as
described above. The probability distributions can then be
used to sample the CBSM results for numerical calculations.

VI. NUMERICAL CALCULATIONS

In this section, we show the results of the numerical cal-
culations. We use the Monte Carlo method for the simulation:
sampling the measurement results randomly and counting the
number of successes, errors, and failures. We sample the result
of each physical-level BSM one by one in order, which is
exponentially faster than sampling all the measurement re-
sults at once. The detailed method for sampling the CBSM
results using the results in the previous section is presented in
Appendix C.
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FIG. 5. Success probabilities pI of a CBSM with (a) coherent-
state qubits or (b) multiphoton polarization qubits [11] against the
photon survival rate η for different ranges of the expected cost Cexp.
For coherent-state qubits, the amplitude α is fixed to α = 1.6 and
the letter solidity parameter j is chosen to maximize pI for each
η and range of Cexp. For polarization qubits, we define Cexp := nm,
which is the number of physical-level BSMs used for one CBSM.
Part (a) shows that the repetition indeed contributes to enhance the
success probability. Comparing (a) and (b), we can see that the
CBSM with coherent-state qubits outperforms that with polarization
qubits when the repetition size is relatively small.

Note that there are four free parameters related to the
hardware-efficient CBSM scheme: n, m, α, and j. n and m
determine the block- and physical-level repetition sizes of the
scheme, respectively. α is the amplitude of the coherent state
constituting the logical basis. j is the letter solidity parameter,
which is the number of not-failed blocks used for the majority
vote of letters in the logical level.

A. Performance analysis

Now, we analyze the performance of the hardware-efficient
CBSM scheme suggested in Sec. IV C by calculating nu-
merically the success, error, and failure probabilities of the
scheme with various settings of the parameters (n, m, α, j).
For the simulation, we assume that both systems have the
same photon survival rates η. We use the Monte Carlo method
as mentioned above. For each trial, we first choose one of the
four Bell states as the initial state with equal probabilities,
sample the physical-level BSM results for the selected initial
state, then determine the logical Bell state using the hardware-
efficient CBSM scheme. Repeating the process enough times,
we determine the success, Z-error, and failure probabilities
(referred to as pI , pZ , and pfail, respectively) of the CBSM
scheme. We also calculate the expected cost Cexp defined in
Definition 2.

Figure 5 illustrates pI of a CBSM with coherent-state
qubits or polarization qubits [11] against the photon survival
rate η for different ranges of Cexp, where pI is maximized for
each η and Cexp. Figure 5(a) shows that the repetition indeed
enhances the performance if η � 0.8 compared to the case
without repetition. The effect of the repetition is especially
crucial if η is close to unity. For example, if η = 0.95, pI =

0.80 without repetition, but it reaches 0.90 with just a little
repetition (Cexp � 5), and up to 0.99 for 31 < Cexp � 35. In
other words, it is clear evidence that high success rates close
to unity are achievable by the CBSM if the photon survival
rate is sufficiently high. Additionally, comparing Figs. 5(a)
and 5(b), we can see that the CBSM with coherent-state qubits
outperforms that with multiphoton polarization qubits when
the repetition size is relatively small (Cexp � 5). For instance,
if η = 0.99, the CBSM with coherent-state qubits achieves
pI = 0.90 for Cexp � 5, while that with multiphoton polariza-
tion qubits reaches only pI = 0.78.

In Figs. 6(a)–6(c), we compare pI , pZ , and pfail against n
and m for two different values of α (1.2 and 1.6) while fixing
η = 0.99. From this figure, we can check the dependence of
pZ and pfail on the repetition: The physical-level repetition
(m > 1) suppresses Z-errors and the block-level repetition
(n > 1) suppresses failures, as argued in Sec. IV B. Moreover,
the negative effects discussed in Sec. IV B that the physical
(block) -level repetition makes the CBSM vulnerable to fail-
ures (Z-errors) are also shown in the figure, and despite them,
a success probability close to unity still can be achieved.

We additionally plot the approximate average teleportation
fidelity Ftel while fixing η = 0.99 in Fig. 6(d), showing that
Ftel near unity is achievable even with small repetition sizes.
It is another widely used measure for evaluating the perfor-
mance of a BSM scheme defined as follows: Considering the
standard teleportation scheme [6] with the BSM scheme, let
|ψin〉 and ρout be the pure input state and the corresponding
mixed output state, respectively. The average teleportation fi-
delity is defined as Ftel := 〈ψin|ρout|ψin〉, where the averaging
is taken on the Bloch sphere in the logical basis:

f (|ψin〉) := 1

4π

∫ π

0
dθ sin θ

∫ 2π

0
dφ f (|ψin〉) (16)

for |ψin〉 = N (cos θ
2 |0L〉 + eiφ sin θ

2 |1L〉) with N :=
(1 + sin θ cos φ〈0L|1L〉)−1/2. It requires huge computational
resources to calculate Ftel exactly since we need to know all
the off-diagonal terms of the POVM elements of the CBSM in
the basis of the logical-level Bell states as shown in Eq. (D2),
which cannot be done with the Monte Carlo method unlike
the diagonal terms. Nevertheless, if the two systems have the
same photon survival rate, we can approximate Ftel with the
following simple expression derived in Appendix D:

Ftel = pI + pZ

2
+ O
((

me−2η|α|2)n). (17)

Lastly, in Fig. 7, pI is plotted against α and Cexp for four
different survival rates (η = 1, 0.99, 0.95, and 0.9). The figure
shows that pI > 0.98 can be reached for η � 0.95 and ap-
propriate values of α if sufficiently large costs of the CBSM
are available. In lossless cases (η = 1), the success probability
reaches very close to unity for any α � 0.4 with just a little
repetition. As the photon survival rate gets smaller, appropri-
ately large values of α and the cost are required to reach high
success probabilities. In detail, to reach pI > 0.98, we need
α � 0.8 for η = 0.99 and α � 1.4 for η = 0.95. Nevertheless,
the figure also indicates that a higher value of α does not
always guarantee a higher success rate due to dephasing by
photon loss, which is especially evident when η = 0.95.
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FIG. 6. (a) Success, (b) Z-error, and (c) failure probabilities pI ,
pZ , pfail of CBSM, and (d) the corresponding average teleportation
fidelity Ftel against the repetition sizes n and m for the two values of
coherent-state amplitudes α = 1.2 and 1.6. The photon survival rate
η is fixed to 0.99, and j is selected to maximize pI for each (n, m)
point. It clearly shows that physical-level repetition suppresses Z-
error and block-level repetition suppress failure. Ftel is approximately
calculated using Eq. (17). Gray areas in (d) indicate the regions
of (me−2η|α|2 )n > 0.01(1 − Ftel ) where the approximation may be
wrong.

B. Quantum repeater with concatenated
Bell-state measurement

In this subsection, we investigate the performance of the
quantum repeater scheme using the proposed CBSM scheme
for quantum error correction as one of the key applications of
the BSM.

1. Network design

We follow the network design in Ref. [11], which sug-
gests an all-optical quantum network with a quantum repeater
exploiting the CBSM scheme with multiphoton polarization
qubits. As shown in Fig. 8(a), we consider one-way quantum
communication with which a qubit encoded with the modified
parity encoding is transmitted to the other end. While traveling
between two ends with a total distance of L, the qubit passes
through multiple repeater stations separated by intervals of
L0. Figure 8(b) illustrates the processes inside each repeater
station. In each of them, a Bell state |�+〉 is prepared and a
CBSM is performed jointly on the incoming qubit and one
side of the Bell state. The quantum information in the incom-
ing qubit is then teleported to the other side of the Bell state,
which is transmitted to the next station. The measurement re-
sult of the CBSM in each station is sent classically to the final
end for recovering the original quantum information. Because
of the fault tolerance of the CBSM scheme, each repeater
station can correct possible logical errors that originated from
photon loss, which makes a long-range transmission of quan-
tum information possible.

We assume the two sources of photon loss: internal loss
in each repeater station and loss during transmission be-
tween stations with survival rates of η0 and ηL0 := e−L0/Latt ,
respectively, where Latt = 22 km is the attenuation length.
Therefore, the survival rates of two systems on which CBSM
is jointly performed is η1 := η0e−L0/Latt and η2 := η0.

2. Quantification of the performance

One way to quantify the performance of a quantum re-
peater scheme is the asymptotic key generation rate R of
quantum key distribution (QKD), which is the expected length
of a fully secure key that can be produced per unit time
[44,62]. More precisely, it is the product of the raw-key rate
(namely, the length of a raw key that can be produced per
unit time) and the secret fraction (namely, the fraction of
the length of a fully secure key to the length of a raw key
in the asymptotic case of N → ∞, where N is the number
of signals) [62]. We use Rt0 as the measure of performance,
where t0 is the time taken in one repeater station, which we
call the expected key length. The expected key length is given
by [44]

Rt0 = max[Ps{1 − 2h(Q)}, 0], (18)

where Ps is the probability not to fail during the entire trans-
mission, Q is the average quantum bit error rate (QBER),
and h(Q) := −Q log2(Q) − (1 − Q) log2(1 − Q) is the binary
entropy function. The probability Ps is given by

Ps = (1 − pfail )
L/L0 ,

where pfail is the failure probability of a CBSM in a sin-
gle repeater station. The average QBER Q is defined by
Q = (QX + QX )/2, where QX and QZ are given as

QX/Z = 1

2

[
1 −
(

pI ∓ pX ± pZ − pY

pI + pX + pZ + pY

)L/L0
]
,

where pI , pX , pY , and pZ are the success, X -error, Y -error, and
Z-error probabilities of a CBSM in a single repeater station,
respectively.
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FIG. 7. Success probabilities pI against the coherent-state amplitude α and the expected cost Cexp for the different values of the photon
survival rate (η) of both parties. pI is selected by max{pI (n, m, α0, j)|Cexp(n, m, α0, j; η) ∈ [C0 − 2,C0 + 2)} for each point (α0,C0). The
figure indicates that a large value of α does not always guarantee a high success probability, which is especially evident when η = 0.95.

We also define the effective total cost Qtot of the quantum
repeater by

Qtot := Cexp

Rt0
× L

L0
, (19)

where Cexp is the expected cost of a CBSM in a single repeater
station defined in Definition 2. Qtot quantifies the expected to-
tal cost of CBSMs to generate a secret key with unit length. In
the numerical calculations, we try to find the set of parameters
(n, m, α, j) and station interval L0 which minimizes Qtot.

3. Results

We find the optimal parameter sets minimizing the ef-
fective total cost Qtot for the total distance L of 1000 and
10 000 km while fixing η0 = 0.99. The parameter sets to-
gether with the corresponding effective total costs Qtot and
expected key lengths Rt0 are calculated as

L = 1000 km:

(n, m, α, j) = (3, 31, 1.9, 1), L0 = 0.7 km

→ Qtot = (1.019 ± 0.003)×105,

Rt0 = 0.71 ± 0.02,

L = 10 000 km:

(n, m, α, j) = (5, 41, 1.8, 3), L0 = 0.9 km

→ Qtot = (2.09 ± 0.05)×106,

Rt0 = 0.78 ± 0.02.

Figure 9 shows Qtot and Rt0 of the quantum repeater against
the repetition sizes n and m when L = 1000 km for different
settings of the coherent-state amplitude α. Here, α, L0, and
the letter solidity parameter j are selected to minimize Qtot

or maximize Rt0 if they are not fixed explicitly. Figure 9(b)
indicates that Rt0 arbitrarily close to unity can be obtained for
sufficiently large values of n and m. In particular, m should be
large enough to fix Z-errors. On the other hand, since X -errors
are very rare compared to failures and Z-errors, n does not
need to be very large, although it should be larger than 1 to
suppress failures.

Comparing the results for α = 1.4 and 1.9 in Fig. 9, the
CBSM with a small value of α requires a relatively large value
of n to reach low Qtot and high Rt0. This is due to the fact that
the CBSM becomes more vulnerable to failures as α decreases
and the effect of failures can be mitigated by increasing n as
discussed in Sec. IV B. Additionally, the minimal attainable

FIG. 8. (a) Schematic of quantum information transmission through the quantum repeater scheme. Quantum information encoded in
modified parity encoding is transmitted to the other end. It passes through multiple repeater stations where the interval is L0. (b) Schematic of
the process inside each repeater station. A Bell state |�+〉 is prepared inside the station, and a CBSM is performed between the incoming qubit
and one side of the Bell state. The quantum information inside the incoming qubit is then teleported to the other side of the Bell state, which
is then transmitted to the next repeater station. The measurement result of the CBSM is sent classically to the final end to recover the original
quantum information. Due to the fault tolerance of the CBSM scheme, each repeater station can correct possible logical errors from photon
loss that the incoming qubit suffers.
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FIG. 9. (a) The effective total cost Qtot and (b) the expected key length Rt0 of the quantum repeater against the repetition sizes n and m
for three different settings of the coherent-state amplitude α: optimizing α, fixing α = 1.4, and fixing α = 1.9. We fix the total distance as
L = 1000 km and the internal photon survival rate in each station as η0 = 0.99. To calculate Rt0, we also fix the station interval L0 = 0.7 km.
For each (n, m) point, other parameters such as the letter solidity parameter j and the station interval L0 (only for Qtot) are selected to minimize
Qtot or maximize Rt0. The red X marks indicate the optimal point where Qtot is minimized. The parameters at this point are (n, m, α, j) =
(3, 31, 1.9, 1) and L0 = 0.7 km. Rt0 = 0.71 ± 0.02 and Qtot = (1.019 ± 0.003)×105 at this point, where the range is the 95% confidence
interval.

Qtot is smaller for α = 1.9 than for α = 1.4. The dependence
of the performance of the repeater network on α is more
clearly shown in Fig. 10(a), where Qtot and the corresponding
value of Rt0 are plotted against α while fixing L = 1000 km.
Here, Qtot is minimal at α = 1.9, which indicates that the
parity code with α > 2 that is hard to generate is unnecessary
to attain an efficient repeater.

We also plot the dependence of the optimal Qtot and the
corresponding Rt0 to the station interval L0 in Fig. 10(b). It
shows that Qtot is minimal when L0 is around 0.6–1.0 km.

Our repeater scheme shows a similar scale of perfor-
mance to that of the CBSM based on the multiphoton
polarization qubit [11], where optimal Qtot = 6.5×104 and
the corresponding key generation rate is 0.70 obtained for
L = 1000 km and η0 = 0.99 [63], although a strictly fair
comparison is impossible due to the differences in the
physical-level BSM schemes. Even though we cannot say our
repeater scheme is better than that in Ref. [11], it is still a
remarkable result considering that the scheme in Ref. [11] out-
performs recent advanced matter-based and all-optical-based
schemes.

VII. PRACTICAL IMPLEMENTATION

In this section, we describe the methods to implement our
schemes from a practical point of view. We briefly review
how each physical-level element can be implemented, and
we roughly estimate the effects of imperfect physical-level
elements on the performance of the CBSM scheme. Through-
out this section, a logical-level gate or measurement means
a gate or measurement in the modified parity encoding basis
{|0L〉, |1L〉}, whereas a physical-level one means a gate or
measurement in the coherent-state basis {| ± α〉}.

A. Encoding logical qubits

1. Logical level

The encoding circuit of a logical qubit is illustrated in
Fig. 11 for the n = m = 3 case. The desired qubit encoded
in the coherent-state basis is prepared at the first PLS of the
first block. First, a physical-level controlled-NOT (CNOT) gate
is operated between the first PLS of the first block (control)
and the first PLS of each of the other blocks (target). After
that, for each block, CNOT gates are operated between the first
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FIG. 10. Optimal effective total cost Qtot and the corresponding
expected key length Rt0 against (a) the coherent-state amplitude α

and (b) the repeater station interval L0 for the total distance L =
1000 km. For each point, other parameters [n, m, j, and L0 for (a),
and n, m, j, and α for (b)] are selected to minimize Qtot , and the value
of Rt0 corresponds to that optimal set of parameters. Overall, Qtot is
minimum at α = 1.9 and L0 = 0.7 km.

PLS (target) and the other ones (control). The encoding circuit
for arbitrary values of n and m generally requires n − 1 copies
of the coherent state |α〉, n(m − 1) copies of the even SCS
N+(|α〉 + | − α〉), and nm − 1 physical-level CNOT gates. The
decoding circuit is exactly the reverse of the encoding circuit.

2. Effects of imperfect physical-level elements

Here we roughly estimate how imperfect implementation
of the SCSs and CNOT gates used in the encoding circuit
affects the performance of the CBSM scheme. The effects

FIG. 11. Encoding circuit of the modified parity code defined
in Definition 1 for the n = m = 3 case. Here, |ψ〉 is the desired
qubit encoded in the coherent-state basis {|α〉, | − α〉}, and all the
controlled-NOT (CNOT) gates are also operated in the coherent-state
basis. Each state |α〉 + | − α〉 is the even SCS, where the normaliza-
tion constant is omitted.

FIG. 12. Expected numbers (Nexp) of trials of creating an SCS
or implementing a CNOT gate to encode a logical qubit of (n, m) =
(3, 3) for different success probabilities (ps,SCS and ps,g) of the
schemes to generate each SCS or implement each CNOT gate.

can be viewed from two perspectives: nondeterminacy and
inaccuracy.

First, nondeterministic implementation of SCSs or CNOT

gates makes the encoding nondeterministic. Let us suppose
that each SCS (CNOT gate) is created nondeterministically
with a success probability of ps,SCS (ps,g). Then the expected
numbers (Nexp,SCS and Nexp,g) of trials of creating an SCS or
implementing a CNOT gate to encode a logical qubit are given
by

Nexp,SCS = m − 1

ps,SCS

[
1 − pn

s,g

pnm−1
s,g (1 − ps,g)

]
,

Nexp,g = 1 − pnm−1
s,g

pnm−1
s,g (1 − ps,g)

,

which are derived in Appendix E. Nexp,SCS and Nexp,g are
plotted in Fig. 12 for (n, m) = (3, 3), which shows that they
are much more sensitive to ps,g than ps,SCS.

Next, inaccurate SCSs or CNOT gates may make the CBSM
more vulnerable to failures and errors. Let us suppose that
each even SCS for the encoding circuit in Fig. 11 is inac-
curately prepared so that its fidelity with an ideal state is
lower-bounded by FSCS; namely, for each inaccurate even SCS
ρSCS,

F (|+α〉〈+α|, ρSCS) = 〈+α|ρSCS|+α〉 � FSCS (20)

holds, where F is the fidelity function defined by F (ρ, σ ) :=
{Tr[(ρ1/2σρ1/2)1/2]}2 for density operators ρ, σ , and |+α〉 :=
N+(|α〉 + | − α〉) is the ideal even SCS with a normalization
factor N+. We also suppose that each CNOT gate is inaccurately
implemented such that its minimum gate fidelity is lower-
bounded by Fg; namely, for each inaccurate CNOT gate written
as a quantum map Eg,

min
ρ

F (Eg,ideal(ρ), Eg(ρ)) � Fg (21)

holds, where the minimization is taken over all states ρ, and
Eg,ideal is the quantum map corresponding to the ideal CNOT

gate. The Bures distance [64] between two states ρ1 and ρ2 is
defined by

dB(ρ1, ρ2) :=
√

2[1 −
√

F (ρ1, ρ2)].
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FIG. 13. (a) Photon survival rate η where the corresponding pho-
ton loss channel on average makes the fidelity loss on an arbitrary
perfectly prepared encoded state to the same extent as the fidelity loss
by inaccurate SCSs or CNOT gates in the encoding circuit. We assume
that the SCSs (CNOT gates) have the fidelity of FSCS (Fg) with the
ideal one while the CNOT gates (SCSs) are perfect. α is varied within
{1.2, 1.6, 2.0}, while the encoding size is fixed by (n, m) = (3, 3).
(b) FSCS and Fg corresponding to η = 0.95 for different encoding
sizes, i.e., different values of n ∈ {3, 5, 7, 9} and m, while fixing
α = 1.6. FSCS is nearly independent of n.

From the triangular inequality of this distance function and
Eqs. (20) and (21), we get a lower bound of the fidelity Fenc of
the encoded state generated by the inaccurate circuit with the
ideal one:

√
Fenc � 1 − [√1 − F

n(m−1)
2

SCS + (nm − 1)
√

1 −√Fg
]2

:=
√

F lb
enc. (22)

Next, we see how much such inaccurate preparation of the
encoded states decreases the performance of the CBSM by
finding the photon survival rate η corresponding to F lb

enc. In
other words, we find η with the corresponding photon loss
channel �η satisfying

F lb
enc = F (�η(|ψL〉〈ψL|), |ψL〉〈ψL|)

= 〈ψL|�η(|ψL〉〈ψL|)|ψL〉 := F avg
η , (23)

where the averaging is taken on the Bloch sphere as Eq. (16).
We can then estimate the effect of the fidelity loss by that of
the corresponding photon loss channel. Although photon loss
cannot represent arbitrary types of inaccuracy, at least we can
get a rough tendency on how the performance of the scheme
depends on Fenc.

In Appendix F, we derive a closed-form expression of F avg
η

in terms of α, η, R, n, and m. Combining Eqs. (22), (23), and
(F1), we get the values of η corresponding to given values
of FSCS and Fg. Figure 13 illustrates such correspondences
for different parameter sets, where either FSCS or Fg is fixed
to be unity. It shows that our scheme is quite tolerant of the
inaccuracy of SCSs. For example, if α = 1.6, FSCS near 0.7
corresponds to η = 0.95, which does not damage the per-
formance critically, as shown in Figs. 5(a) and 7. However,
our scheme is sensitive to the inaccuracy of CNOT gates; e.g.,
Fg should be larger than about 0.97 even for the smallest
encoding (n, m) = (3, 3) to make the protocol at least work.

3. Implementation of superpositions of coherent states

It was known that SCSs (often called Schrödinger’s cat
states) in free-propagating optical fields may be produced
using a strong nonlinearity [65] or a precise photon-resolving
detector [66,67], although it was experimentally highly de-
manding. Later, the possibilities of generating SCSs using
realistic detectors [68,69], a weak nonlinearity [70–72], or
photon number states [73] were explored. An SCS with α ≈
1.6 was experimentally generated using a photon number state
and homodyne detection [73], although its fidelity was lim-
ited. Recently, photon subtraction was widely used to generate
SCSs due to its simplicity in the implementation [74–79].
Although only odd SCSs with small amplitudes can be gen-
erated reliably by photon subtraction, they can be converted
to even SCSs with larger amplitudes via the nondeterministic
enlargement technique [68,78,80] without significant fidelity
loss [78].

Thanks to these works, free-propagating SCSs with ampli-
tudes of |α| � 2 are now within reach of current technology,
while their purities and the success probabilities of the
schemes have yet to be improved. As a recent example, the
authors in Ref. [78] generated an even SCS of α = 1.85 with a
fidelity of ∼0.59 and a success probability of ∼0.2 via photon
subtraction and the enlargement technique. The authors in
Ref. [77] generated an odd SCS of α = 1.01 with a higher
fidelity (∼0.78) via photon subtraction, although they did not
demonstrate its enlargement. As discussed in Sec. VII A 2, we
estimate that this value of fidelity is barely acceptable to take
advantage of the CBSM scheme. Furthermore, pure odd SCSs
can be generated in principle with photon subtraction [77],
thus it may be possible shortly to generate even SCSs with
high enough fidelities for faithful CBSM.

4. Implementation of the physical-level CNOT gates

Implementing the physical-level CNOT gates is a chal-
lenging task. A CNOT gate for a coherent-state qubit can
be implemented near-deterministically via gate teleportation
with prearranged entangled states [17,18]. An alternative way
proposed in Ref. [81] employs single-photon subtraction as
the driving force to implement the physical-level controlled-
phase (CPHASE) gates, which is relatively easier to implement
and can achieve arbitrary precision but is nondeterministic.
To convert the generated CPHASE gates to the CNOT gates, the
physical-level Hadamard gates are required. It is worth not-
ing that a nondeterministic physical-level Hadamard gate was
experimentally demonstrated for small values of α (�0.75)
with a gate fidelity of F ≈ 0.7 [82]. In short, physical-level
CNOT gates with a sufficiently high fidelity for the CBSM
scheme are possible in principle, while their experimental
implementations require further investigation.

B. Photon-number parity detectors

Once logical qubits are prepared off-line, PNPDs and
50:50 beam splitters are only in-line physical-level elements
required for the CBSM, as shown in Fig. 3. Unlike beam
splitters, PNPDs are quite challenging to implement. We thus
define the cost function of a CBSM in Definition 2 as half the
number of PNPDs used for it.
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FIG. 14. Probability mass function Pr(n) of n := max(n1, n2),
where n1 and n2 are the numbers of photons entering the two PN-
PDs, respectively, in a physical-level BSM for different values of α,
assuming that the state is an equal mixture of the four Bell states just
before the measurement.

There are two ways to realize PNPDs: detecting the parity
of the photon number directly (i.e., direct measurement) or
detecting it indirectly by measuring the photon number (i.e.,
indirect measurement).

Regarding the direct measurement, parity measurements
in cavities have been demonstrated and realized via Rydberg
atoms interacting with photons [83], Ramsey interferome-
try [40,84], or strong nonlinear Hamiltonian of a Josephson
circuit [37]. However, parity measurements of propagating
waves have not been covered much yet except a few stud-
ies such as parity measurement via strong nonlinear optical
switching devices [85,86] or a cavity QED system realized in
superconducting circuits [87].

Indirect measurement, or photon-number-resolving (PNR)
detection, is a more actively studied topic due to its wide
usability [88]. PNR schemes again can be classified into
two categories: inherent PNR detectors and multiplexed
single-photon detectors. Transition edge sensors (TESs) are
promising candidates for inherent PNR detectors [89–93],
which can distinguish up to 12 photons with an estimated
detection efficiency of 0.98 [94]. While inherent PNR de-
tectors generally demand tricky conditions [95], multiplexed
single-photon detectors exploit several inexpensive single-
photon detectors [96–101]. However, it is currently difficult to
achieve sufficiently high efficiency with multiplexed single-
photon detectors; e.g., one cannot resolve more than three
photons with better-than-guessing quality by using ideal click
detectors with an eight-segment detector [88].

Practically, PNPDs, which can distinguish up to a particu-
lar number of photons, are sufficient. For example, for faithful
physical-level BSM, PNPDs should distinguish up to at least
about 8 photons for α = 1.2, 12 photons for α = 1.6, and 16
photons for α = 2, as shown in Fig. 14, which is partially
feasible in current technology. Additionally, neglecting dark
count errors (where the PNPDs detect photons although no
photons are entered), errors in the PNPD results may make
sign flip errors (Z-errors) as shown in Table I, thus they can
be corrected in block-level BSMs as discussed in Sec. IV B.
PNPDs with an error rate of p make an additional logical

Z-error rate of roughly

�pz ≈ 1 −
[

1 −
(

m
m+1

2

)
p

m+1
2

]n

≈ n

(
m

m+1
2

)
p

m+1
2 ,

where the second approximation holds if p �( m
(m+1)/2

)2/(m+1)
. For example, if p = 5%, �pz ≈ 2.2%

for (n, m) = (3, 3) and �pz ≈ 0.15% for (n, m) = (7, 7).

C. Logical-level X and Z gates

Logical-level X and Z gates (XL and ZL) are used in the
quantum repeater scheme discussed in Sec. VI B to recover
the original quantum information from the transmitted state
based on the classical information on the CBSM results at the
end of the network. Note that they are not necessary for the
CBSM scheme itself.

An XL (ZL) gate can be decomposed into n (m) physical-
level X (Z) gates:

XL =
n∏

i=1

Xik for any k � n, (24a)

ZL =
m∏

k=1

Zik for any i � m, (24b)

where Xik (Zik) is a physical-level X (Z) gate on the kth PLS
of the ith block.

Implementation of the physical-level X gate is straightfor-
ward: X = exp(iπa†a), where a is the annihilation operator,
is just swifting the electromagnetic wave’s phase by π [18].
Implementation of the physical-level Z gate is more com-
plicated due to its nonunitarity. An approximate Z gate can
be achieved via a nonlinear medium [17], gate teleportation
with resources of SCSs [18,21], or single-photon subtraction
[81]. The single-photon subtraction method was experimen-
tally demonstrated in Ref. [102].

VIII. CONCLUSION

Bell-state measurement (BSM) is an essential element
for optical quantum information processing, particularly for
long-range communication through a quantum repeater. The
original coherent-state encoding with basis {| ± α〉} enables
one to perform nearly deterministic BSM, but it is vulnerable
to dephasing by photon loss, especially for large values of
the amplitude α of the coherent states required to reduce
its nonorthogonality. Fault-tolerant operations with encoded
coherent-state qubits have been studied mainly with cavity
systems, which cannot be directly applied to free-propagating
fields.

In this paper, we have explored the possibility to use
such encoded coherent-state qubits for long-range quantum
communication by designing an appropriate encoding scheme
and the corresponding fault-tolerant BSM schemes. We have
presented the modified parity encoding, which is a natural
extension of the original coherent-state encoding, and we
also suggested a hardware-efficient concatenated Bell-state
measurement (CBSM) scheme performed in a completely or
partially distributed manner. We have argued and numerically
verified that the CBSM scheme successfully suppresses both
failures and dephasing simultaneously. We have also shown

043205-15



LEE, LEE, AND JEONG PHYSICAL REVIEW RESEARCH 3, 043205 (2021)

that SCSs with reasonable values of the amplitude such as
α � 2 are enough to achieve the success probability close
to unity. It is worth noting this point since it is difficult to
generate superpositions of coherent states (SCSs) with large
amplitudes. It is known that free-propagating SCSs with α �
2 can be generated using current technology [73,75,78]. Fur-
thermore, we have shown that the quantum repeater scheme
using the CBSM scheme for error correction enables efficient
long-range quantum communication over 1000 km, where the
performance against the cost is on a similar level with the
CBSM scheme of the multiphoton polarization encoding [11].

In summary, we have demonstrated that the properly en-
coded coherent-state qubits in free-propagating fields provide
an alternative way for fault-tolerant information processing
enabling long-range communication. In addition to presenting
the possibility, we have shown that the performance of our
CBSM and repeater scheme is comparable to that of other
methods, and even exceeds them in some cases.

Our encoding and CBSM schemes are relatively sim-
ple: The modified parity encoding is a simple generalized
Shor’s nine-qubit code, and the CBSM is also just a clas-
sical information processing with the results of well-known
physical-level BSMs. We have further shown that the methods
to encode logical qubits and implement logical gates and mea-
surements are the elementary compositions of physical-level
gates or measurements in the coherent-state basis. Therefore,
the most challenging part to realize our scheme is on the
physical level, such as generating free-propagating SCSs and
implementing elementary logical gates and photon-number
parity detectors (PNPDs) used for physical-level BSMs. For-
tunately, many appropriate implementation methods have
been proposed for all of them, even though some of them are
nondeterministic or costly. Of course, experimental inaccu-
racy during these physical-level processes would also affect
the performance of our scheme, which was approximately es-
timated in Sec. VII. The details of such effects require further
investigations in the future.
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APPENDIX A: POSITIVE-OPERATOR-VALUED MEASURE
ELEMENTS OF BELL-STATE MEASUREMENT ON

COHERENT-STATE QUBITS IN A LOSSY ENVIRONMENT

Here, we explicitly present the positive-operator-valued
measure (POVM) elements of BSM under the basis of
{| ± α〉} in a lossy environment, which is addressed in Sec. II.
The set of operators {Mx,y|x, y ∈ {0, 1, 2}} where

Mx,y := [UBS ◦ (Λη1 ⊗ Λη2

)]†
(�x ⊗ �y)

forms a POVM corresponding to the BSM of coherent-state
qubits, where UBS is a unitary channel corresponding to a
50:50 beam splitter, Λη is a photon loss channel with a sur-
vival rate of η, and �x is a projector defined by

�0 := |0F〉〈0F|, �1 :=
∑

n�1:odd

|nF〉〈nF|,

�2 :=
∑

n�2:even

|nF〉〈nF|,

where |nF〉 is the Fock state with a photon number of n. The
photon loss channel �η transforms |α〉〈α| and |α〉〈−α| as
follows:

�η(|α〉〈α)| = |√ηα〉〈√ηα|, (A1a)

�η(|α〉〈−α|) = e−2(1−η)|α|2 |√ηα〉〈−√
ηα|. (A1b)

with these relations, we find the analytic expressions of the
matrix elements of each POVM element Mx,y as

〈φ±|Mx,y|φ±〉 = c±
[
1 ± (−1)x+ye−2(2−η1−η2 )|α|2] fx(η+) fy(η−), (A2a)

〈ψ±|Mx,y|ψ±〉 = c±
[
1 ± (−1)x+ye−2(2−η1−η2 )|α|2] fx(η−) fy(η+), (A2b)

〈φ±|Mx,y|ψ±〉 = c±
[±(−1)x+ye−2(1−η1 )|α|2 + e−2(1−η2 )|α|2] fx(

√
η+η−) fy(

√
η+η−), (A2c)

〈φ+|Mx,y|φ−〉 = 〈ψ+|Mx,y|ψ−〉 = 〈φ±|Mx,y|ψ∓〉 = 0, (A2d)

where

c± := e−(η1+η2 )|α|2

1 ± e−4|α|2 , η± := (
√

η1 ± √
η2)2

2
, fi(η) :=

⎧⎨⎩1 if i = 0,

sinh(η|α|2) if i = 1,

cosh(η|α|2) − 1 if i = 2.

APPENDIX B: DERIVATION OF THE PROBABILITY
DISTRIBUTIONS OF CONCATENATED BELL-STATE

MEASUREMENT RESULTS

In this Appendix, we show a brief outline to induce
the analytic expressions of the probability distributions of

CBSM results conditioning to the initial Bell states before
the measurement. We only consider the unoptimized CBSM
scheme since the measurement results of the hardware-
efficient CBSM scheme are the direct consequences of those
of the unoptimized scheme.
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1. Derivation of the probability distributions
of block-level results

We first find the probability distributions of block-level
BSM results, conditioning to the initial block-level Bell state.
A single BSM1 result can be expressed by two vectors x, y ∈
{0, 1, 2, 3}m, where their ith elements are the two PNPD re-
sults of the ith PLS. We want to find Pr(x, y | B1) for |B1〉 ∈
B1 := {|φ(m)

± 〉, |ψ (m)
± 〉}

From Eqs. (5) and (12a), the conditional probability for the
initial state of |B1〉 = |φ(m)

± 〉 is expressed as

Pr(x, y | φ(m)
± ) = 〈φ(m)

± |
m⊗

i=1

Mxi,yi |φ(m)
± 〉

= 1

2
Ñ±(1, m)2

∑
l,l ′=even�m

g±
m,l,l ′ (x, y), (B1)

where Ñ±(1, m) is defined in Eq. (9). The function g±
m,l,l ′ (x, y)

is defined as

g±
m,l,l ′ (x, y) :=

∑
⊗m

i=1 |Pi〉∈P±(m,l )⊗m
i=1∈|P′

i 〉∈P±(m,l ′ )

[
m∏

i=1

〈Pi|Mxi,yi |P′
i 〉
]
,

where

P±(m, l ) := Perm[|ψ±〉⊗l |φ±〉⊗m−l ]

and Perm[·] is the set of all the permutations of tensor products
inside the square brackets. The function g±

m,l,l ′ has a recur-
rence relation (omit x and y for simplicity):

g±
m,l,l ′ = g±

m−1,l,l ′M
(m)±
11

+ [g±
m−1,l,l ′−1 + g±

m−1,l−1,l ′ ]M
(m)±
12

+ g±
m−1,l−1,l ′−1M (m)±

22 , (B2)

where

M (k)±
11 := 〈φ±|Mxk ,yk |φ±〉, (B3a)

M (k)±
12 := 〈φ±|Mxk ,yk |ψ±〉, (B3b)

M (k)±
22 := 〈ψ±|Mxk ,yk |ψ±〉, (B3c)

which can be calculated from Eqs. (A2). Now, we define a
vector v±

m (x, y) (note that g±
m,l,l ′ is a function of x and y):

v±
m :=

⎛⎜⎜⎝ ∑
l,l ′:even�m

g±
m,l,l ′ ,

∑
l:even�m
l ′:odd�m

g±
m,l,l ′ ,

∑
l:odd�m

l ′:even�m

g±
m,l,l ′ ,

∑
l,l ′:odd�m

g±
m,l,l ′

⎞⎟⎟⎠
T

. (B4)

From Eq. (B2), we get a recurrence relation of v±
m :

v±
m =

⎛⎜⎜⎜⎜⎝
M (m)±

11 M (m)±
12 M (m)±

12 M (m)±
22

M (m)±
12 M (m)±

11 M (m)±
22 M (m)±

12

M (m)±
12 M (m)±

22 M (m)±
11 M (m)±

12

M (m)±
22 M (m)±

12 M (m)±
12 M (m)±

11

⎞⎟⎟⎟⎟⎠v±
m−1

:= M̃±
xm,ym

v±
m−1. (B5)

Considering the initial condition at m = 1, v±
m (x, y) is written

as

v±
m (x, y) = M̃±

xm,ym
· · · M̃±

x1,y1
(1, 0, 0, 0)T . (B6)

Finally, Pr(x, y | φ(m)
± ) is written in terms of the vector v±

m
using Eqs. (B1) and (B4):

Pr(x, y | φ(m)
± ) = 1

2 Ñ±(1, m)2v±
m1(x, y), (B7a)

where v±
mi is the ith element of v±

m . In the similar way,
Pr(x, y | ψ (m)

± ) is written as

Pr(x, y | ψ (m)
± ) = 1

2 Ñ±(1, m)2v±
m4(x, y). (B7b)

In conclusion, the conditional probability distribution of
CBSM results conditioning to the input block-level Bell state
is obtained from Eqs. (B7) with Eqs. (A2), (B3), (B5), and
(B6), all of which are written in simple matrix forms.

2. Derivation of the probability distributions
of logical-level results

Now, we consider the probability distributions of logical-
level results conditioning to the initial logical-level Bell state,
which is the goal of this Appendix. A single CBSM result can
be expressed by two matrices X, Y ∈ {0, 1, 2, 3}n×m, where
their (i, k) elements are the two PNPD results of the kth PLS
of the ith block. What we want to find is the probability
distribution Pr(X, Y | B2) for |B2〉 ∈ B2 := {|�±〉, |±〉}.

Because of the similarity of Eqs. (8) and (12), we can
follow almost the same logical structure as the previous
subsection when finding the expressions of the probability
distributions. However, there exist three main differences
between the block and logical level. First, the roles of
the letters and signs are inverted between the two sets
of equations. Second, there are unnormalized states in
the summations of Eqs. (8), unlike Eqs. (12). Lastly,
〈φ(m)

+ (ψ (m)
+ )|⊗m

k=1 Mxk ,yk |φ(m)
− (ψ (m)

− )〉 vanishes unlike the cor-
responding one in the block level, i.e., 〈φ±|Mx,y|ψ±〉 in
Eq. (B3b).

Considering the differences, we define 2×2 matrices L̃φ
x,y

and L̃ψ
x,y where x, y ∈ {0, 1, 2, 3}m, instead of 4×4 matrices,

in the similar way to the block-level case:

L̃φ(ψ )
x,y :=

(
Lφ(ψ )

+ Lφ(ψ )
−

Lφ(ψ )
− Lφ(ψ )

+

)
,

where

Lφ(ψ )
± := [1 ± u(α, m)2]

× 〈φ(m)
± (ψ (m)

± )|
m⊗

k=1

Mxk ,yk |φ(m)
± (ψ (m)

± )〉, (B8)

u(α, m) is defined in Eq. (11), and xk (yk) is the kth element
of x (y). We do not need 4×4 matrices, since the off-diagonal
elements of

⊗m
k=1 Mxk ,yk between two Bell states of different

signs vanish. We also note that the right-hand side of Eq. (B8)
can be calculated from Eqs. (B7). The conditional probability
Pr(X, Y | B2), where the ith row vector of X (Y) is xi (yi), is
then

Pr(X, Y | �+(+)) = Ñ+(n, m)2w
φ(ψ )
n1 (X, Y), (B9a)

Pr(X, Y | �−(−)) = Ñ−(n, m)2w
φ(ψ )
n2 (X, Y), (B9b)
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where Ñ±(n, m) is defined in Eq. (9), and wφ(ψ )
nμ (X, Y) is

the μth element of the two-dimensional vector wφ(ψ )
n (X, Y)

defined by

wφ(ψ )
n (X, Y) := L̃φ(ψ )

xn,yn
· · · L̃φ(ψ )

x1,y1
(1, 0)T . (B10)

APPENDIX C: METHOD FOR SAMPLING
CONCATENATED BELL-STATE

MEASUREMENT RESULTS

In this Appendix, we explain the method to sample
CBSM results. Since we have the analytic expressions

of the probability distributions of measurement results
[Eqs. (B9)], it is possible to sample arbitrary CBSM re-
sults, each of which is composed of 2nm PNPD results.
However, since the number of CBSM results increases ex-
ponentially on n and m, it is computationally expensive
to use this method. Instead of that, denoting (p, q) the
qth PLS of the pth block, we sample the results for each
PLS in order: (1, 1) → (1, 2) → (1, 3) → · · · → (1, m) →
(2, 1) → · · · → (2, m) → · · · → (n, m). Therefore, we need
the conditional probability of getting each (p, q) result condi-
tioning to all the results before (p, q).

The conditional probability we want is

Pr(xpq, ypq | x11, y11, . . . , xp′q′ , yp′q′ ; B2) ∝ Pr(x11, y11, . . . , xpq, ypq | B2)

= Pr(x1, y1, . . . , xp−1, yp−1, xp1, yp1, . . . , xpq, ypq|B2), (C1)

where

(p′, q′) =
{

(p, q − 1) if q > 1,

(p − 1, m) otherwise,

xik and yik are the measurement results of the two (i, k) PNPDs, |B2〉 ∈ B2, and xi (yi) is a vector whose kth element is xik

(yik). Note that the proportionality is valid only when x11, y11, . . . , xp′q′ , yp′q′ are fixed. From now on, we use the proportionality
notation while assuming this condition. Using Eq. (8a) and the fact from Eq. (A2d) that the cross terms of

⊗m
s=1 Mxrs,yrs between

Bell states with different signs vanish, it is deduced that the right-hand side of Eq. (C1) with |B2〉 = |�±〉 is

Pr(x1, y1, . . . , xp−1, yp−1, xp1, yp1, . . . , xpq, ypq|�+(−) )

∝
∑

k:even(odd)�n

∑
⊗n

r=1 |P(m)
r 〉∈Perm[|�−〉⊗k |�+〉⊗n−k ]

[
C2(n−k)

+ C2 j
− h(p,q)

P1,...,Pp

]
, (C2)

where C± := [1 ± u(α, m)2]1/2, the normalization constant in Eq. (10). Also,

h(p,q)
P1,...,Pp

:=
[

p−1∏
r=1

〈
P(m)

r

∣∣ m⊗
s=1

Mrs

∣∣P(m)
r

〉]〈
P(m)

p

∣∣( q⊗
s=1

Mps

)
⊗ I⊗m−q

∣∣P(m)
p

〉
, (C3)

where Mrs := Mxrs,yrs , and I is the identity operator in a single PLS. Again, using Eq. (12a), the last part of the right-hand side of
the above definition is

〈φ(m)
± |
(

q⊗
s=1

Mps

)
⊗ I⊗m−q|φ(m)

± 〉 ∝
∑

l,l ′:even�m

∑
⊗m

s=1 |Ps〉∈Perm[|ψ±〉⊗l |φ±〉⊗m−l ]⊗m
s=1 |P′

s 〉∈Perm[|ψ±〉⊗l′ |φ±〉⊗m−l′ ]

[
q∏

s=1

〈Ps|Mps|P′
s〉

m∏
s=q+1

〈Ps|P′
s〉
]

:= ξ
φ
±,p,q.

After transforming the right-hand side of the above equation appropriately with using the fact that 〈φ−|ψ−〉 vanishes while
〈φ+|ψ+〉 does not, we obtain

ξ
φ
+,p,q =

{
R+

q (v+
q1 + v+

q4) + R−
q (v+

q2 + v+
q3) if q < m,

v+
m1 if q = m,

(C4a)

ξ
φ
−,p,q =

{
v−

q1 + v−
q4 if q < m,

v−
m1 if q = m,

(C4b)

where R±
q := (1 + 〈φ+|ψ+〉)m−q ± (1 − 〈φ+|ψ+〉)m−q, and v±

qi is the ith element of vector v±
q (x1, y1, . . . , xp, yp) calculated from

Eq. (B6). Substituting these in Eq. (C3) and transforming it appropriately, Eqs. (C1) and (C2) become

Pr(xpq, ypq | x11, y11, . . . , xp′q′ , yp′q′ ; �±)

∝ Pr(x1, y1, . . . , xp−1, yp−1, xp1, yp1, . . . , xpq, ypq|�±)

∝
{

C2
+ξ

φ
+,p,q

(
D±

p w
φ

p−1,1 + D∓
p w

φ

p−1,2

)+ C2
−ξ

φ
−,p,q

(
D±

p w
φ

p−1,2 + D∓
p w

φ

p−1,1

)
if p < n,

C2
±ξ

φ
±,p,qw

φ

n−1,1 + C2
∓ξ

φ
∓,p,qw

φ

n−1,2 if p = n,
(C5)
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where D±
p := (C2

+ + C2
−)n−p ± (C2

+ − C2
−)n−p, and w

φ

p−1,i is the ith element of vector wφ

p−1(x1, y1, . . . , xp−1, yp−1) defined in
Eqs. (B10).

The probability distribution for the initial state of |B2〉 = |±〉 is obtained in a very similar way to the above arguments. The
result is as follows:

Pr(xpq, ypq | x11, y11, . . . , xp′q′ , yp′q′ ; ±)

∝
{

C2
+ξ

ψ
+,p,q

(
D±

p w
ψ

p−1,1 + D∓
p w

ψ

p−1,2

)+ C2
−ξ

ψ
−,p,q

(
D±

p w
ψ

p−1,2 + D∓
p w

ψ

p−1,1

)
if p < n,

C2
±ξ

ψ
±,p,qw

ψ

n−1,1 + C2
∓ξ

ψ
∓,p,qw

ψ

n−1,2 if p = n,
(C6)

where w
ψ

p−1,i is the ith element of vector wψ

p−1(x1, y1, . . . , xp−1, yp−1) defined in Eq. (B10), and

ξ
ψ
+,p,q =

{
R+

q (v+
q1 + v+

q4) + R−
q (v+

q2 + v+
q3) if q < m,

v+
m4 if q = m,

(C7a)

ξ
ψ
−,p,q =

{
v−

q1 + v−
q4 if q < m,

v−
m4 if q = m.

(C7b)

In summary, the probability distributions of (p, q) re-
sults conditioning to the previous measurement results
(1, 1), . . . , (p′, q′) and the initial logical-level Bell state can
be obtained from Eqs. (C5) and (C6) together with Eqs. (C4)
and (C7). We use these probability distributions to sample
each physical level one by one in order. There are only nine
possible results for each PLS, and the number of PLSs in-
creases linearly on n and m. Hence, it is exponentially fast
compared to sampling the results with total joint probabilities.

APPENDIX D: AVERAGE TELEPORTATION FIDELITY

Here, we derive Eq. (17) on the average teleportation fi-
delity Ftel of CBSM, assuming that the two parties have the
same photon survival rate (η1 = η2 = η). Ftel is defined as
Ftel := 〈ψin|ρout|ψin〉, where

|ψin〉 = N

(
cos

θ

2
|0L〉 + eiφ sin

θ

2
|1L〉
)

with N := (1 + R sin θ cos φ)−1/2 is an input state of the stan-
dard teleportation protocol using CBSM (R := |0L〉〈0L|1L),
ρout is the corresponding output state, and the average is taken
as

f (|ψin〉) := 1

4π

∫ π

0
dθ sin θ

∫ 2π

0
dφ f (|ψin〉). (D1)

From now on, we write |0L〉, |1L〉, and |ψin〉 without the
subscripts. We define the unnormalized and normalized Bell
states as

|B̃0(1)〉 := |0〉|0〉 ± |1〉|1〉,
|B̃2(3)〉 := |0〉|1〉 ± |1〉|0〉,

|Bi〉 :=
{

N+|B̃i〉 if i ∈ {0, 2},
N−|B̃i〉 if i ∈ {1, 3},

where N± := [2(1 ± R2)]−1/2. Suppose that Alice has |ψ〉A

and Alice and Charlie share |B0〉A′C . Then

|ψ〉A|B0〉A′C =1

2
N+
∑

i

[|B̃i〉AA′ ⊗ Pi|ψ〉C] := |T 〉

holds, where

Pi :=

⎧⎪⎨⎪⎩
I if i = 0,

Z if i = 1,

X if i = 2,

XZ if i = 3.

Alice performs CBSM on her sides AA′ and transfers the result
classically to Charlie. If the CBSM does not fail and its results
is |Bi〉, Charlie applies Pi to his side and finally obtain ρout.

Let Mi for i ∈ {0, 1, 2, 3} and Mf denote the POVM
elements of CBSM corresponding to |Bi〉 and failure,
respectively. Also, let M ′

i be an operator satisfying M ′
i
†M ′

i =
Mi. ρout can be written as (omitting subscripts A, A′, and C)

ρout = gTrAA′

[∑
i

(M ′
i ⊗ Pi )|T 〉〈T |(M ′

i
† ⊗ P†

i )

]
,

where g := 1/(1 − 〈T |Mf ⊗ I|T 〉). We thus get

〈ψ |ρout|ψ〉 = Tr(ρout|ψ〉〈ψ |)

= g〈T |
[∑

i

Mi ⊗ Pi|ψ〉〈ψ |P†
i

]
|T 〉

= N2
+g

4

∑
i, j,k

〈B̃ j |Mi|B̃k〉〈ψ |P†
j Pi|ψ〉〈ψ |P†

i Pk|ψ〉.

(D2)

We first calculate g. Remark that a BSM2 fails only if all
the BSM1 fail and a BSM1 fails if any BSM0 fails. Thus,
Mf is the summation of the tensor products of physical-level
POVM elements shown in Appendix A such that each term
contains at least n of M0,0. Since every matrix element of M0,0

is O(e−2η|α|2 ) and the number of the terms in Mf containing n
of M0,0 is mn, we get

∀(i, j), 〈Bi|Mf |Bj〉 = O
((

me−2η|α|2)n).
Therefore,

g = 1

1 − 〈T |Mf ⊗ I|T 〉 = 1 + O
((

me−2η|α|2)n)
holds.
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To calculate Ftel = 〈ψ |ρout|ψ〉, we first note

g〈ψ |P†
j Pi|ψ〉〈ψ |P†

i Pk|ψ〉

= 〈ψ |P†
j Pi|ψ〉〈ψ |P†

i Pk|ψ〉 + O
((

me−2η|α|2)n). (D3)

Considering N = 1 + O(R), it is straightforward to see

〈ψ |P†
j Pi|ψ〉〈ψ |P†

i Pk|ψ〉 =
⎧⎨⎩1 if i = j = k,

1
2 + O(R) if i �= j = k,

O(R) otherwise.
(D4)

Note that

O
((

me−2η|α|2)n) � O(R) = O
((

me−2|α|2)n).
Using Eqs. (D2)–(D4) and N± = 1√

2
+ O(R2), we finally ob-

tain Eq. (17):

〈ψ |ρout|ψ〉 = pI + pX + pY + pZ

2
+ O
((

me−2η|α|2)n)
= pI + pZ

2
+ O
((

me−2η|α|2)n), (D5)

where

4pI :=
∑

i

〈Bi|Mi|Bi〉,

4pX := 〈B2|M0|B2〉 + 〈B3|M1|B3〉
+ 〈B0|M2|B0〉 + 〈B1|M3|B1〉,

4pY := 〈B3|M0|B3〉 + 〈B2|M1|B2〉
+ 〈B1|M2|B1〉 + 〈B0|M3|B0〉,

4pZ := 〈B1|M0|B1〉 + 〈B0|M1|B0〉
+ 〈B3|M2|B3〉 + 〈B2|M3|B2〉.

The second equality in Eq. (D5) holds due to η1 = η2.

APPENDIX E: CLOSED-FORM EXPRESSION
OF Nexp,SCS AND Nexp,g

Here we get closed-form expressions of Nexp,SCS and Nexp,g

defined in Sec. VII A 2, the expected numbers of trials of cre-
ating an SCS or implementing a CNOT gate to encode a logical
qubit, in terms of the success probabilities (ps,SCS and ps,g)
of the schemes to generate an SCS and to implement a CNOT

gate. We first assume ps,SCS = 1 and denote p := ps,g for
simplicity. From the encoding circuit in Fig. 11, it is observed
that the first i CNOT gates are involved with min(i, n) blocks
and each block uses m − 1 SCSs. Hence, if the ith CNOT gate
fails, one should prepare new (m − 1) min(i, n) SCSs and try
the encoding again.

For each trial of encoding, there are nm possible events,
each of which is denoted as Es or Ei for 1 � i � nm − 1. The
event Es (Ei) corresponds to the success (failure) of the ith
CNOT gate. The probability of each Ei and the corresponding
numbers (NSCS and Ng) of trials of creating an SCS and imple-
menting a CNOT gate are given as follows:

Pr(Es) = pnm−1,

Pr(Ei ) = pi−1(1 − p),

NSCS(Es) = n(m − 1),

NSCS(Ei ) = (m − 1) min(i, n),

Ng(Es) = nm − 1,

Ng(Ei ) = i.

From these results, we get the expectation of NSCS condition-
ing that we do not get Es:

〈NSCS〉fail =
∑

i NSCS(Ei )Pr(Ei )

1 − Pr(Es)

= (m − 1)

[
n − 1

1 − pnm−1

(
n − 1 − pn

1 − p

)]
.

Similarly, we get

〈Ng〉fail = 1

1 − p
− (nm − 1)pnm−1

1 − pnm−1
.

We now consider repeating multiple trials of encoding
until we get Es. The expected number of failed events before
the successful one is 1/Pr(Es) − 1 = 1/pnm−1 − 1. We thus
obtain Nexp,SCS and Nexp,g as follows:

Nexp,SCS =
(

1

pnm−1
− 1

)
〈NSCS〉fail + n(m − 1)

= (m − 1)

[
1 − pn

pnm−1(1 − p)

]
,

Nexp,g =
(

1

pnm−1
− 1

)
〈Ng〉fail + nm − 1

= 1 − pnm−1

pnm−1(1 − p)
. (E1)

If ps,SCS � 1, 1/ps,SCS trials are on average required to create
a SCS. Therefore, we can rewrite Nexp,SCS as

Nexp,SCS = m − 1

ps,SCS

[
1 − pn

pnm−1(1 − p)

]
. (E2)

Equations (E1) and (E2) are the closed-form expressions that
we want.

APPENDIX F: CLOSED-FORM EXPRESSION OF Favg
η

Here we get a closed-form expression of F avg
η defined in

Sec. VII A 2 as

F avg
η := F (�η(|ψ〉〈ψ |), |ψ〉〈ψ |)

= 〈ψ |�η(|ψ〉〈ψ |)|ψ〉
(omitting the subscripts L), where

f (|ψ〉) := 1

4π

∫ π

0
dθ sin θ

∫ 2π

0
dφ f (|ψ〉)

for a function f and

|ψ〉 := 1√
1 + R sin θ cos φ

(
cos

θ

2
|0〉 + eiφ sin

θ

2
|1〉
)

with R := 〈0|1〉. The effect of the photon loss channel �η is
shown in Eq. (A1).
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F avg
η can be expressed as

F avg
η =

∑
i, j,k,l

ci jkl〈i|�η(| j〉〈 j|k)|l〉.

Calculating the integrals, we get

c0000 = c1111

= 1

4R2

[
1

1 − R2
+ 1

2R
ln

(
1 + R

1 − R

)
− 2

]
:= f1

4R2
,

c1001 = c0110 = c0011

= 1

4R2

[
1

1 − R2
− 1

2R
ln

(
1 + R

1 − R

)]
:= f2

4R2
,

c0001 = c0111 = c0010 = c1011 = − f2

4R
,

c1010 = 1

4R2

[
2 + 1

1 − R2
− 3

2R
ln

(
1 + R

1 − R

)]
:= f3

4R2
,

and ∀i, j, k, l, ci jkl = clk ji. Next, 〈i|�η(| j〉〈 j|k)|l〉 is calcu-
lated as

〈0|�η(|0〉〈0|0)|0〉 = 〈1|�η(|1〉〈1|1)|1〉 = Ca+b+,

〈1|�η(|0〉〈0|0)|1〉 = 〈0|�η(|1〉〈1|1)|0〉 = Ca+b−,

〈0|�η(|0〉〈0|1)|1〉 = Ca−b+,

〈0|�η(|0〉〈0|0)|1〉 = 〈1|�η(|1〉〈1|1)|0〉 = Ca+d,

〈0|�η(|0〉〈0|1)|0〉 = 〈1|�η(|0〉〈0|1)|1〉 = Ca−d,

〈1|�η(|0〉〈0|1)|0〉 = Ca−b−,

where

x := e−|α|2 ,

C :=
[

2

(1 + x2)m + (1 − x2)m

]n

,

a± :=
[(

1 + x2(1−η2 )

2

)m

±
(

1 − x2(1−η2 )

2

)m]n

,

b± := 1

4n

[(
x(1−η)2 + x(1+η)2 + 2x(1+η2 )

)m
+ (x(1−η)2 + x(1+η)2 − 2x(1+η2 )

)m
± 2
(
x(1−η)2 − x(1+η)2)m]n

,

d := 1

4n

[(
x(1−η)2 + x(1+η)2 + 2x(1+η2 )

)m
− (x(1−η)2 + x(1+η)2 − 2x(1+η2 )

)m]n
.

Combining the above results, we obtain the following closed-
form expression of F avg

η in terms of α, R, η, n, and m:

F avg
η = C

2R2
[ f1a+b+ + f3a−b−

+ f2{a+b− + a−b+ − 2R(a+ + a−)d}]. (F1)
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